























14

#### Improving password security

- Apply the function f "x" times to the password (iteratively)
   if x = 100 million, testing a password guess takes a few seconds
  - need to increase x with time (Moore's law)
  - need to increase x with time (Moore's law)
     need to define function f such that special hardware crackers do not
  - need to define function i such that special national effects to in gain a large advantage over general purpose computers (memory intensive)
  - e.g. PBKDF2 (Password-Based Key Derivation Function 2), scrypt, bcrypt, Argon2
- · Disadvantage:
  - one cannot use the same hashed password file on a faster server and on an embedded device with an 8-bit microprocessor
     need to use different values of x depending on the computational power of the machine

13

- deemed too expensive for large Internet companies

#### Improving password security (2)

- Internet companies are using a function f "x" times with a small value of x combined with a MAC algorithm (e.g. HMAC).
  - idea: MAC computation with secret key in dedicated server
- Example Facebook (piling up of legacy systems) SHA-2(bcrypt(HMAC<sub>K</sub>(MD5(salt || password)))





- Advantage: can be verified using a public string  $PK_{CA}$
- Advantage: can only be generated by CA
- Disadvantage: signature = 40..128 bytes
- Disadvantage: can still be copied/intercepted

Possibility of replay: liveliness is missing





### Bart Preneel Entity authentication and key establishment



• resynchronization mechanism needed







# ZK definitions

- **complete:** if Alice knows the secret, she can carry outthe protocol successfully
- **sound:** Eve (who wants to impersonate Alice) can only convinceBob with a very small probability that she is Alice;
- zero knowledge: even a dishonest Bob does not learn anything except for 1 bit (he is talking to Alice); he could have produced himself all the other information he obtains during the protocol.

23

# Overview Identification Protocols

|                     | Guess | Eavesdrop<br>channel<br>(liveliness) | Impersonation<br>by Bob | Secret<br>info for<br>Bob | Security |
|---------------------|-------|--------------------------------------|-------------------------|---------------------------|----------|
| Password            | -     | -                                    | -                       | -                         | 1        |
| Magstripe<br>(SK)   | +     | -                                    | -                       | -                         | 2        |
| Magstripe<br>(PK)   | +     | -                                    | -                       | +                         | 3        |
| Dynamic<br>password | +     | +                                    | -                       | -                         | 4        |
| Smart card<br>(SK)  | +     | +                                    | -                       | -                         | 4        |
| Smart Card<br>(PK)  | +     | +                                    | +                       | +                         | 5        |

26

28



# Entity authentication in practice

- Phishing mutual authentication
- Losing devices local authentication to device need to check proper linking of tw protocols (e.g. EMV)
- Sharing devices biometry
- Interrupt after initial authentication authenticated key establishment
- Mafia fraud distance bounding

# Mutual entity authentication

- Phishing is impersonating of the verifier (e.g. the bank)
- Most applications need entity authentication in two directions
- User needs to make judgment: difficult!
- Mutual entity authentication is not equivalent to 2 parallel unilateral protocols for entity authentication

27

# Limitations of devices Device authenticates user but if the user looses the device...

- solution: authenticate user to device using
- password, PIN or biometrics
- but need to connect both phases properly! (EMV example)
- Device can be passed on to others (delegation, fraud)
  - solution: biometrics





















# Voice recognition

- Speech processing technology well developed
- Can be used at a distance
- Can use microphone of our gsm
- But tools to spoof exist as well
- Typical applications: complement PIN for mobile or domotica

39

41

# Iris Scan

- No contact and fast
- Conventional CCD camera
- 200 parameters
- Template: 512 bytes
- All etnic groups
- Reveals health status



# Retina scan

- Stable and unique pattern of blood vessels
- Invasive
- High security



• Measure distance, speed, accelerations, pressure

- Familiar
- Easy to use
- Template needs continuous update
- Technology not fully mature



42

# Facial recognition

- User friendly
- No cooperation needed
- Reliability limited
- Robustness issues
   Lighting conditions
  - Glasses/hair/beard/...



43

47

| Comparison    |            |           |             |               |          |  |  |  |
|---------------|------------|-----------|-------------|---------------|----------|--|--|--|
| Feature       | Uniqueness | Permanent | Performance | Acceptability | Spoofing |  |  |  |
| Facial        | Low        | Average   | Low         | High          | Low      |  |  |  |
| Fingerprint   | High       | High      | High??      | Average       | High??   |  |  |  |
| Hand geometry | Average    | Average   | Average     | Average       | Average  |  |  |  |
| Iris          | High       | High      | High        | Low           | High     |  |  |  |
| Retina        | High       | Average   | High        | Low           | High     |  |  |  |
| Signature     | Low        | Low       | Low         | High          | Low      |  |  |  |
| Voice         | Low        | Low       | Low         | High          | Low      |  |  |  |
|               |            |           |             |               |          |  |  |  |





# Solution

- Authenticated key agreement
- Run a mutual entity authentication protocol
- Establish a key
- Encrypt and authenticate all information exchanged using this key



#### Location-based authentication

- Distance bounding: try to prove that you are physically close to the verifier
- Other uses of "location"
  - Dial-back: can be defeated using fake dial tone
  - IP addresses and MAC addresses can be spoofed
  - Mobile/wireless communications: operator knows access point, but how to convince others?

49

- Trusted GPS: Galileo?

# <text><text><text><text><text>

# Key establishment

- The problem
- How to establish secret keys using secret keys?
- How to establish secret keys using public keys?
  - Diffie-Hellman and STS
- How to distribute public keys? (PKI)

# Key establishment: the problem

- Cryptology makes it easier to secure information, by replacing the security of information by the security of keys
- The main problem is how to establish these keys
  - 95% of the difficulty
  - integrate with application
  - if possible transparent to end users



# GSM (2)

- SIM card with long term secret key Ki (128 bits)
- secret algorithms
  - A3: MAC algorithm
  - A8: key derivation algorithm
  - A5.1/A5.2: encryption algorithm
- anonimity: IMSI (International Mobile Subscriber Identity) replaced by TIMSI (temporary IMSI)
- the next TIMSI is sent (encrypted) during the call set-up





Symmetric key distribution with 3rd party(2)

- After: Alice and Bob share a short term key *k*
- Need to trust third party!
- Single point of failure in system



#### Kerberos/Single Sign On (2)

- Step 1: Alice gets a "day key"  $K_A$  from AS (Authentication Server)
  - based on a Alice's password (long term secret)
  - $-K_A$  is stored on Alice's machine and deleted in the evening
- Step 2: Alice uses  $K_A$  to get application keys  $k_i$  from TGS (Ticket Granting Server)
- Step 3: Alice can talk securely to applications (printer, file server) using application keys *k<sub>i</sub>*



























#### Recommended reading

- Dirk Balfanz, Richard Chow, Ori Eisen, Markus Jakobsson, Steve Kirsch, Scott Matsumoto, Jesus Molina, Paul C. van Oorschot: The Future of Authentication. IEEE Security & Privacy 10(1): 22-27 (2012)
- Joseph Bonneau, Cormac Herley, Paul C. van Oorschot, Frank Stajano: The Quest to Replace Passwords: A Framework for Comparative Evaluation of Web Authentication Schemes. IEEE Symposium on Security and Privacy 2012: 553-567